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Analysis of Semiconductor Microcavity Lasers Using 
Rate Equations 

Gunnar Bjork and Yoshihisa Yamamoto, Member, IEEE 

Abstract-The rate equations for a microcavity semiconduc- 
tor laser are solved and the steady-state behavior of the laser 
and some of its dynamic characteristics are investigated. It is 
shown that by manipulating the mode density and the sponta- 
neous decay rates of the cavity modes, the threshold gain can 
be decreased and the modulation speed can be improved. How- 
ever, in order to fully exploit the possibilities which the modi- 
fication of the spontaneous decay opens up, the active material 
volume in the cavity must be smaller than a certain value. Sub- 
jects covered in the paper are threshold current using different 
definitions, population inversion factor, L-I curves, linewidth, 
and modulation response. 

I. INTRODUCTION 
ODIFICATION of the spontaneous emission rate of M an excited atom or an electron-hole pair opens up 

new possibilities in optical engineering. Both in the mi- 
crowave region [1]-[4] and in the optical region [5]-[7], 
alteration of the spontaneous emission rate, and related 
phenomena, such as Rabi oscillation, have been demon- 
strated long ago. In the last few years several groups have 
been studying the effect of spontaneous emission en- 
hancement/suppression in semiconductor material de- 
vices [7]-[ lo]. 

A rate equation analysis of an ideal microcavity laser 
with perfect population inversion, predicts that the thresh- 
old pump rate may be several orders of magnitude lower 
than that of a conventional laser [8]. The reason for this 
is that in an ideal microcavity laser the power dissipation 
of the active material is dominated by photon emission 
into one of the cavity modes. However, if the inverted 
medium is made from a semiconductor material, it is dif- 
ficult to accomplish the perfect inversion assumed in an 
ideal laser. Furthermore, in order to fulfill the Bernard- 
Duraffourg condition [ 1 1 1 ,  one needs a certain density of 
electrons and holes in the conduction and valence band, 
respectively. Some people have claimed that the need to 
fulfill this condition will seriously impair the potential for 
low threshold currents in semiconductors lasers. Others 
have said that in reducing the size of the laser, and thus 
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the active material volume, the threshold current will go 
down, this being a pure size effect that has nothing to do 
with the alteration of the spontaneous emission rate. Oth- 
ers yet, have claimed that the threshold reduction can only 
be explained by cavity QED. The first purpose of this pa- 
per has been to clarify these issues. It will be shown that 
the transparency free-carrier density will set a lower limit 
to the threshold current, but only if the active material 
volume is ‘‘large.’’ In Section 111 we will state a condition 
when the transparency free-carrier density does limit the 
threshold current reduction. This condition will define the 
term ‘‘large.’’ We will also show that as long as the active 
material is “large” the decrease in threshold current with 
volume can be described as a pure size effect. However, 
when the active volume is “small,” the threshold current 
can be decreased without decreasing the size of the cav- 
ity. (In [5], increase of the spontaneous emission rate for 
a constant cavity length is discussed.) This can be viewed 
as an cavity QED effect because it comes purely from the 
field-atom interaction modification by the cavity. 

The second purpose of this paper is to show what to 
expect from a typical microcavity laser. We have calcu- 
lated, e.g. ,  L-I curves, linewidths, and modulation re- 
sponses for both ideal and nonideal devices. It is shown 
that present devices operate far from the ideal limits 
mainly because of nonradiative recombination processes 

11. RATE EQUATIONS 
We describe the free-camer density N in the active me- 

dium, and the photon population p in the cavity with rate 
equations. In a single-mode laser this is justified as long 
as the dephasing time of the active material dipole mo- 
ment is much shorter than both the cavity photon lifetime 
rp and the spontaneous emission lifetime rSp. If this is the 
case, the dipole moment coupling between the inverted 
medium and the photons can be eliminated adiabatically 
[12]. We will come back to the practical constraints the 
lifetime condition puts on a microcavity laser. Assuming 
that the dipole moments can be eliminated adiabatically, 
the rate equations can be written 
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Here, I is the injection current, q is the electron charge, 
V is the volume of the active material (and this can be 
substantially smaller than the cavity volume), T,, is the 
nonradiative recombination lifetime, g is the active ma- 
terial gain when it sits in the cavity in s - ’  and y = l / ~  
is the cavity decay rate in s-’. The spontaneous emissio; 
lifetime is defined as 

rbP = l/c A,  
I 

(3) 

where A,  is the spontaneous emission rate of the active 
material into mode i. Note that the different rates A,  may 
differ due to the presence of a cavity. If the cavity band- 
width of a mode is larger than the gain bandwidth, the 
atoms may see a modified vacuum-field intensity in this 
mode (or rather quasi-mode), and the cavity decay rate 
into the mode will be modified. If the free spectral range 
of the cavity is smaller than the gain bandwidth, so there 
are many cavity modes within the gain bandwidth, the 
decay rate will be equal for all modes. In the former case, 
the rate A ; ,  as compared with the rate if the cavity was not 
present, can be suppressed by a factor 1 - R or enhanced 
with a factor 1 /( 1 - R )  where R is the reflectivity of the 
cavity mirrors [5], [ lo],  depending on whether the atomic 
transition frequency coincides with the cavity resonance 
frequency or not. The spontaneous emission coupling ra- 
tio p is defined as 

(4) 

where index 0 indicates the optical mode which will even- 
tually lase. 

To describe the relation between the optical gain and 
the free-camer density in the semiconductor we have as- 
sumed a linear gain model 

( 5 )  
where No is the transparency carrier concentration of the 
gain material. This model, chosen for simplicity, should 
bring out at least the qualitative behavior of free-carrier 
concentration on the gain, and around N = No it should 
give a good quantitative agreement. 

From Einstein’s relation between the A and B coeffi- 
cients it is clear that for every mode, the spontaneous 
emission equals the stimulated emission when the average 
photon number in the mode is unity. Inspecting (2), using 
(5) we get 

g = g w  - No) 

g’ = PV/Gp. (6) 
From ( l ) ,  ( 2 ) ,  (3, and ( 6 )  we can calculate some of 

the static and dynamic properties of the microcavity semi- 
conductor laser. ‘This is the topic of the subsequent sec- 
tions. Before doing so, we will briefly discuss sponta- 
neous emission rate enhancement. As can be seen from 
(4), there are several ways of increasing the spontaneous 
emission coupling ratio. The first is simply to reduce the 
number of modes that couples to the gain medium. The 

p u m p k i t t r  ‘Ight Emitted light t 

‘Thin active layer 

Fig. 1. Schematic example of one-dimensional (left) and three-dimen- 
sional (right) microcavities. The active layer is usually thin and the Bragg 
mirrors passive, but this need not be the case. 

mode density per unit frequency can be written 

8Tvcn ’ nK 

GlJ p = -  (7) 

where V,. is the cavity volume, n is the refractive index of 
the cavity material, ng is the group index of the modes 
with an optical frequency = U ,  and Xo is the vacuum 
wavelength of these modes. If all modes have the same 
decay rate, the spontaneous emission coupling ratio will 
be roughly inversely proportional to the cavity volume. 
For a fixed number of interacting modes, 0 will increase 
if the spontaneous emission rates into other modes are 
suppressed, or the spontaneous emission rate into the la- 
sing mode is enhanced. The enhancement/suppression is 
a true cavity QED effect and requires, as explained above, 
that the gain bandwidth is at least smaller than the cavity 
free spectral range. Depending on the balance between 
the three processes described, the spontaneous lifetime 
may either decrease or increase. In a planar (one-dimen- 
sional) dielectric cavity structure (Fig. l),  T , ~  will gen- 
erally increase slightly when 0 is increased [9]. On the 
other hand, in a well designed, laterally guiding (three- 
dimensional) microcavity T , ~  can be reduced substantially 
when 0 is increased [ 101. In our rate equations it is under- 
stood that T , ~  is the spontaneous lifetime of the active ma- 
terial when it sits in the cavity. The cavity spontaneous 
emission lifetime T , ~  may therefore differ substantially 
from that of the bulk active material. 

111. THRESHOLD BEHAVIOR 
One of the most prominent and perhaps most promising 

features of the microcavity lasers is their potential of very 
low threshold current operation. In the first report to point 
this out, the authors dubbed them “virtually zero thresh- 
old lasers” [ 131. While the devices certainly can have low 
threshold currents, it may be in the sub p A  domain, it is 
certainly finite and, in general, well defined as will be 
shown. In semiconductor microcavity lasers, however, the 
picture is somewhat more complicated due to the fact that 
to invert the medium, the free-carrier density has to ex- 
ceed a certain level. The question has been raised if this 
will prohibit very low threshold semiconductor lasers. As 
will be shown in this section, the answer to the question 
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lies partly in how large the laser active volume is, and 
partly in how the threshold current is defined. We will 
look at three different threshold definitions and compare 
the resulting threshold currents. 

The first and most widely used definition for the thresh- 
old current is that the net stimulated gain should equal the 
loss. Pumping harder, the net stimulated emission will 
rapidly become the dominant emission source and lasing 
will occur. Inspecting (2) we find that this is equivalent 
to 

From (2) it can be seen that the net stimulated steady-state 
gain can only equal the loss at an infinite photon number. 
Thus, strictly speaking, (8) is unphysical. However, in 
applying (8) it is implicitly assumed that when calculating 
the free-carrier density, and thus the gain, stimulated re- 
combination can be neglected. Doing so we get 

so that 

where 4 is a dimensionless parameter defined by 

E = -  N O W  
YTsp 

Note that E can be interpreted as the photon number in 
the lasing mode when N = No,  that is, when the active 
medium is transparent. At this inversion level there is no 
net stimulated emission, and 4 is the ratio of spontaneous 
photon emission into the lasing mode No V P / T , ~  and the 
cavity loss rate y. As will be shown, if this number is 
larger than unity we need only to increase the free-camer 
density slightly above the transparency value to get sub- 
stantial stimulated emission. In this case the threshold is 
mainly determined by the material properties. If, on the 
other hand, E is much smaller than unity, we need to raise 
the free-carrier density substantially to offset the cavity 
loss, so the threshold will be mainly determined by the 
cavity properties. 

Before calculating the threshold current, the population 
inversion factor will be derived. Using the definition nsp 
= N / ( N  - No), and (lo), the population inversion factor 
when (8) is fulfilled can be expressed 

(12) 
As the photon number implicitly has been assumed to be 
infinity when (8) is fulfilled, this is also the population 
inversion factor of a microcavity laser well above thresh- 
old. In Fig. 2 the function has been drawn using dashed 
lines. It is clear that the active volume should be smaller 
than y ~ , ~ / N ~ / 3  to assure a low population inversion pa- 
rameter at and above threshold. 

nsp.thl = 1 -k E .  

._ I I 
L 

P 

." 
l o s  lod 1 0 ~ ~  io-2 0.1 I 

Spontaneous emission coupling ratio p 
Fig. 2 .  The population inversion parameter at threshold (right vertical axis) 
versus the spontaneous emission coupling ratio, for two different active 
volumes. The nonradiative recombination rate has been assumed to be neg- 
ligible compared to the radiative recombination rate. The dashed line is for 
the threshold definition (8), the solid line is for the definition plh = n\p.ch. 
The solid line also shows the photon number at threshold (left vertical axis). 

Using (9) and (10) we find that the threshold pump cur- 
rent will be 

Zthl = - (1 + 4 )  1 +- . 
qy P ( 1:) 

Inspecting this equation one can conclude that irrespec- 
tive of the value of E ,  there will always be a threshold 
current penalty as soon as r,, becomes smaller than T,~. 
This is expected, and it is presently a major obstacle to 
overcome in the device fabrication process, as the re- 
ported T,, values of laterally guided (three-dimensional) 
semiconductor microcavity lasers [14] are at least an or- 
der of magnitude smaller than the corresponding 7,p. If 
we assume that we have an ideal active material so that 
we can neglect the nonradiative recombination, the 
expression for the threshold current will consist of two 
terms. The left term depends mainly on the properties of 
the cavity (6  and y), and the right term (using the defi- 
nition of E and factoring out /3 and y) depends mainly on 
the properties of the gain medium (No, V ,  and T , ~ ) .  If E 
becomes sufficiently small (1 3) reduces to 

On the other hand, if E >> 1, the threshold current can 
be approximated by 

If we reduce E by reducing the volume of the active 
medium, the threshold current will decrease until the left 
term in (13) dominates. This threshold reduction is mainly 
a classical effect. We make the number of atoms smaller 
and thereby make the injection current to sustain the spon- 
taneous emission into all nonlasing modes negligible 
compared to the lasing mode losses. Equation (14) is pro- 
portional to 1/P and sets the fundamental limit for the 
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threshold gain for a given cavity. If nonradiative recom- 
bination is negligible, the ultimate threshold current is in- 
dependent of both T ~ ~ ,  No, and V .  It should be pointed out 
that in a conventional semiconductor laser in which the 
active material fills a substantial part of the cavity vol- 
ume, so the poten- 
tial threshold current reduction is four to five orders of 
magnitude if we can just keep 4 small as 0 is increased. 
Reduction of the threshold current by increasing p can be 
considered mixture of a classical effect and cavity QED 
effect. If p simply reduces inversely with the cavity vol- 
ume, as it will in a macroscopic or an ill designed micro- 
cavity laser, the reduction can still be viewed as an clas- 
sical effect. The number of modes interacting with the 
active material has simply been reduced. If /3 can be in- 
creased faster than the inverse of the cavity volume, or 
without changing the cavity volume at all, it is a cavity 
QED effect. The presence of the cavity has selectively 
increasedldecreased the coupling between the atoms and 
the vacuum modes. A plot of the threshold current (13) 
as a function of P is shown by the dashed dotted lines in 
Fig. 3 for typical microcavity semiconductor laser param- 
eters. It can be seen in the figure that as long as p < 
so that [ < 1 the threshold current is approximately given 
by (14) for the laser with the larger active volume. When 
p > the threshold current is roughly given by (15). 
The laser with the smaller active volume follows (14) as 
long as /3 < 0.1. 

We note that if we have an ideal microcavity laser, with 
no nonradiative recombination, 4 = 0 and /3 = 1, then 
(14) simplifies to 

may be in the order of lop5 to 

Ithl = 47.  (16) 
This equation has a simple interpretation. In such an 

ideal laser the only loss mechanism is photons emitted 
into the lasing mode. The photon emission rate is exactly 
the rate at which we must inject new carriers in order to 
compensate for the loss. Since the photon loss rate in this 
case is -yp, (16) tells us that the mean photon number at 
threshold is unity for a truly ideal laser! 

Noting that the conventional definition of the threshold 
(8) strictly speaking is unphysical, in that the stimulated 
emission can never quite compensate for the optical loss, 
a better definition of the threshold would perhaps be that 
the net stimulated emission (that is, the stimulated emis- 
sion minus the stimulated absorbtion) shall equal the 
spontaneous emission. The reason this (in our opinion, 
better) definition is seldom used, is that the definition in- 
volves the photon number and not simply the gain. Thus, 
a nonlinear analysis must be undertaken. As will be shown 
below, the two definitions will give the same threshold 
current to within a factor of two, the new definition giving 
the lower estimate. Looking at ( 2 ) ,  ( 5 ) ,  and (6) at steady 
state, one easily finds that the new definition leads to a 
threshold photon number given by 

 IO-^ 10' 10.~ in-* 0.1 1 
Spontaneous emission coupling ratio p 

Fig. 3 .  Threshold current versus spontaneous emission coupling ratio. 
Dashed-dotted lines correspond to the threshold definition that the net stim- 
ulated gain equals the loss, dashed lines correspond to plh n,p,rh. and 
solid lines correspond to the definition pth 3 1 .  

Here, Nth2 is the free-carrier concentration at threshold and 
nsp, rh2 is the population inversion parameter at this thresh- 
old. Inserting this equation in (2) one can express the 
threshold photon number in the rate equation parameters 
as 

This is always a finite number. Per definition, it is also 
the population inversion parameter at the new threshold. 
The function is drawn in Fig. 2 using solid lines. Solving 
(2) for the free-carrier concentration at threshold, one ar- 
rives at the equation 

From this equation it can be seen that with the threshold 
definition (17) the free-carrier density at threshold will 
always be larger than the transparency density No. Plug- 
ging (1 8) and (19) into (1) one finally finds the threshold 
current to be 

In Fig. 3 the threshold current according to the definition 
in (17) is plotted using dashed lines. The equation will 
give roughly the same result as (13) when 4 >> 1 and it 
will be a factor of two smaller than (13) when 4 << 1. 

A third threshold definition used is that the stimulated 
emission rate shall simply equal the spontaneous emission 
rate at threshold. The rationale behind this definition is 
that at this pump level, half of the photons emitted into 
the mode will be emitted coherently, the other half will 
be added noncoherently. Pumping harder, both the co- 
herence properties and the quantum efficiency will im- 
prove rapidly due to the rapidly increasing stimulated 
emission. From the Einstein relation already mentioned, 
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this definition of the threshold will imply that the mean 
photon number in the mode at threshold is unity: 

Pth3 1. (21) 
Using this definition in (2) at steady state, we immedi- 
ately get the free-carrier density at threshold 

Somewhat surprisingly we find that using the definition 
(21) of Pth, when 0 and I/ are sufficiently large (so that 4 
is much larger than unity), the threshold free-camer con- 
centration will be Nth = N0/2. The active medium has 
higher stimulated absorbtion than emission, but due to the 
spontaneous emission, the mean photon number in the 
mode will still be unity. The laser will thus emit photons 
at a rate y. 

The population inversion factor at threshold, using (2 1) 
as the threshold definition can be expressed 

The fact that the population inversion factor is - 1 when 
4 is large leads us to the conclusion that this threshold 
definition may not be suitable when E > 1.  Having this 
in mind, and using (1) and ( 2  l ) ,  we find that the threshold 
pump current using (21) will be 

In Fig. 3 the threshold current according to the definition 
in (21) is plotted using solid lines. Equation (21) will also 
give roughly the same result as (13) when t >> 1 and 
will be a factor of two smaller than (13) when .$ << 1 .  
The only case where there is a substantial discrepancy be- 
tween the two former threshold definitions and the last 
one is when both the active volume and the spontaneous 
emission coupling ratio are large, and the nonradiative re- 
combination is negligible. The difference is easily ex- 
plained by looking at the photon number in the mode at 
the threshold defined by (17), remembering that in this 
regime the overall quantum efficiency is roughly unity 
(Fig. 2). To increase the photon number by a factor of 
ten, one has to increase the pump current by a factor of 
ten. At /3 = 1 the threshold photon number for the two 
threshold definitions differs by roughly a factor of 2000, 
so the threshold currents differ with the same factor. 

After computing the different threshold currents we can 
make some comments on them. We find that as long as 4 
is small, they predict the same threshold current within a 
factor of two. When 4 is larger than unity they still agree 
well, except when 0 is very close to unity. Within this 

regime it is difficult to make a clear definition when lasing 
begins since the transition from LED to laser behavior 
rather smooth. We note that the threshold definitions 1 
and 2 will make a much more conservative estimate of the 
threshold current in this regime. 

We would like to conclude this section with two nu- 
merical examples, one for a conventional semiconductor 
laser and one for a microcavity laser. A conventional 
GaAs semiconductor laser has a cavity volume of approx- 
imately 1 x 2 X 300 pm. The active material volume can 
be estimated to be one tenth of this volume. The trans- 
parency free-carrier density in GaAs is approximately 10l8 
cmP3, the spontaneous emission lifetime is 3 ns, the re- 
fractive index is 3.5, and the FWHM of the optical gain 
r is around 20 ns at an emission wavelength of 800 nm 
[ 1 11. The loss rate for a cleaved facet FP laser is roughly 
40 cm-' or 4 x 10" s - ' .  Assuming that the decay rate 
into every mode is the same, we can estimate the spon- 
taneous emission coupling ratio using (7) to be /3 = 
h3Xo/87rV,I', where h is the wavelength in the GaAs cav- 
ity and ho is that in free space. We have also approxi- 
mated the group index with the bulk refractive index of 
GaAs. Using the figures above we find that is approxi- 
mately 3 x lop5 and that 4 = 1.6. This is reasonable, 
since the population inversion parameter (which can be 
expressed 1 + 4 )  for such structures is often reported to 
be in the range 2-3. Nonradiative recombination can usu- 
ally be neglected in these lasers, using (20) we find the 
threshold current for the device to be 5.5 mA. This 
roughly the correct value. From the value of 4 we find 
that the threshold current could be reduced to merely half 
its calculated value by simply making the active volume 
smaller. 

The next example we will calculate is a 5 pm diameter 
Ino rGa0.8As single qu!ntum well laser emitting at 980 nm 
[14]. The QW is 80 A thick and we have estimated the 
cavity length to be ten wavelengths. The cavity volume is 
thus around 65 pm3 and the active volume is 0.15 pm3. 
The Bragg mirror transmission was 0.1 %, so the decay 
rate can be estimated to be 3.3 x 1Olo s-I. We assume 
that the gain linewidth, the spontaneous emission rate, and 
the transparency free-carrier density are the same as in the 
last example. Since the free spectral range of the cavity 
is roughly equal to the gain bandwidth, the reduction of 
the threshold current for this device is not a cavity QED 
effect, in spite of its small size. We can again assume that 
the decay rates for all modes are equal and we get /3 = 
3.6 X and 4 = 5.4. The nonradiative lifetime is 
stated to be shorter than 100 ps, we will assume the value 
50 ps. From (20) the threshold current is found to be 0.2 
mA. This is almost an order of magnitude smaller than 
the reported value of 1.5 mA. Due to the uncertainties in 
the estimated values of No, T ~ ~ ,  and r,, we cannot expect 
a perfect agreement between theory and experiment. What 
the example shows, however, is that again the threshold 
current probably could be reduced by making the active 
volume smaller even though cavity QED plays no role for 
this device. 
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IV. STEADYSTATE CHARACTERISTICS 

A .  Output Power 
The output power characteristics of a microcavity laser 

is radically different from an ordinary laser. If the micro- 
cavity laser supports only one mode within the its gain 
bandwidth, and if nonradiative recombination is negligi- 
ble, then photon emission is the only means of power dis- 
sipation and the quantum efficiency of the device must be 
unity both below and above threshold. This was noted 
long ago and one then expects a device with a smooth 
transition from LED operation to laser operation. 

Using (l), ( 2 ) ,  ( 5 ) ,  and (6)  one can express the photon 
number as a function of the pump current. However, for 
mathematical simplicity, it is easier to express the pump 
current as a function of the photon number. The result is 

I = E (1 + c ; )  1 + pp + ") - t o p ] .  (25) P I . 1 + P  Tnr 

In Fig. 4, input versus output curves are drawn for three 
different combination of parameters, and it can be seen 
that except when = 1 there is a sharp increase in the 
photon number (and output power) as soon as the photon 
number exceeds unity. This is an argument for the thresh- 
old definition (21). When = 1 the transition from below 
to above threshold is smooth, provided that the nonradia- 
tive recombination is negligible. It is thus difficult to make 
an unambiguous definition of the threshold pump current 
based on the input-output or the gain characteristics when 

= 1. In drawing the output power axis we have as- 
sumed that there are no optical losses except mirror losses. 
If one wishes to include other optical losses, one can sim- 
ply multiply the plotted output power with (y - yo)/y, 
where y is still the total optical decay rate, and yo is the 
total decay rate into all other modes except the lasing 
mode. Of course, when the injection current is many times 
its threshold value, (25)  simplifies to 

I = 47P. (26) 
The fast stimulated emission decay rate combined with 

the assumption that mirror loss is the only optical decay 
process will assure the unity quantum efficiency mani- 
fested by (26) .  In the limit /3 = 1 and r,, >> rSp one also 
amves at (26) from (25) at all pump rates, as expected. 

B. Linewidth 
To get information about the frequency noise spectrum 

of microcavity lasers, one has to start with optical field 
equations and subsequently assign the correct noise 
sources. This is beyond the scope of this paper, but to at 
least get a feeling for the spectral purity of the microcav- 
ity semiconductor lasers we have calculated the line- 
width, using an equivalent electrical circuit model (Fig. 
5) described in [ 151. This model neglects the gain-refrac- 
tive index coupling of the active material and thus under- 
estimates the linewidth above the threshold by a factor 1 + CY*, where CY is the linewidth enhancement parameter. 

I O *  io4 
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" ' " " " 
107 y = 1 0 ' ~ s  ' 

I O 2  g 

I O ~ l  g 

I O 4  O 
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1 k i  

10-2 5 
1 0 . ~  5 
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n I io4 1 0 . ~  

Injection current (mA) 
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1081 " " ' " ' ' A  

2 103 

.c 10 a 

lod 
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(b) 

0 3  

1 0 . ~  
I 
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Fig. 4. The mean photon number in the mode (left axis) and the corre- 
sponding total output power ( A  = 1 p n ,  right axis) versus the pump cur- 
rent. In (a) and (c). [ is always smaller or equal to unity, in (b) [ is larger 
than unity when (3 > lo-'. In (a) and (b) nonradiative recombination is 
negligible, but in (c) it dominates below threshold. 

Fig. 5. Laser equivalent electrical circuit for linewidth calculation. The 
noise currents io and i,n associated with the load conductance Go and the 
negative conductance G,, respectively, are assumed to have flat spectra 
within the cold cavity bandwidth. 

However, the model is simple to use and brings out the 
main features of the spectral linewidth of microcavity la- 
sers. With this said, the reader is alerted that in order to 
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properly include the effect of CY, (3 1)-(33) should be mul- 
tiplied by l + CY*. 

A V = - = -  Go ( 1 + -  2).  
Q 2nC 

Here, Q is the total Q value of the cavity including all 
gain and loss mechanisms, Go is the circuit conductance 
due to the output coupling loss, C is the circuit capaci- 
tance, and G, is the negative conductance representing 
the net stimulated emission. The noise currents associated 
with the load and the negative conductance are io and i,, 
respectively. The only assumption we have to do about 
these are that their spectral densities are constant over the 
cavity bandwidth. It is straight forward to identify the out- 
put coupling loss rate y with the ratio G o / C .  The ratio 
between the photon loss and the net stimulated emission 
can be found inspecting ( 2 )  and the result for the line- 
width is 

Far below threshold where N = 0 (28) reduces to 

This is the cold cavity bandwidth of a cavity with absorb- 
ing material inside, and it is wider than the cold cavity 
bandwidth of the empty cavity y / 2 n .  To get an expres- 
sion for the other limit, above threshold, we observe that 
in steady state we have 

from (2 ) .  Using this relation in (28) and noting that per 
definition N = nsp(N - No) one gets 

PVn,,(N - No) yn\p 

2 m p P  2TP 
(31) 

where in the last step we have used (30) and the fact that 
high above threshold the last term of the right-hand side 
of (30) vanishes. This equation is an equivalent formu- 
lation of the Schawlow-Townes linewidth formula. High 
above threshold we can replace nsp using (12) ,  and we get 

- -  Au = - 

In order to keep the linewidth low it is preferable to keep 
E below unity. 

To write (3 1) in a more conventional way we introduce 
the total emitted optical power P ,  = hupy where h is 
Planck’s constant. We also introduce the cold (and empty) 
cavity bandwidth Au, = y / 2 n .  One finds that (31) is 
equivalent to the expression 

2nhu(Au,.)*n,, 
Au = (33) 

p,  

Equation (27) is known to give a correct result irre- 
spective of the particular laser structure (Fabry-Perot, 
distributed Bragg reflector, etc.) if y l L  < 1 where yI  is 
the optical loss per unit cavity length, and L is the cavity 
length [ 161. We can express y/ in y as 

Y/ = Y/V, (34) 
where vg is the group velocity of the counter-propagating 
waves inside the cavity. Using the relation vg = X u ,  where 
X is the wavelength in the cavity, we find that 

(35) 

Since, per definition in a microcavity laser, the last factor 
in (35) is of the order of unity, y l L  will be smaller than 
unity as long as the decay rate is smaller than the optical 
frequency. This is true even for moderately (50%) reflect- 
ing cavity mirrors which proves the validity of using (28) 
for microcavity lasers. 

In Fig. 6,  the linewidth of different microcavity semi- 
conductor lasers are plotted versus the pump current using 
(28).  It has been assumed that optical losses apart from 
mirror losses are negligible. From the curves we see that 
most microcavity configurations will come close to the 
ideal limit where nsp = 1 and the overall quantum effi- 
ciency is unity (P ,  = Zhu/q). The only exception, as fore- 
seen in the last section, is when the active volume of the 
laser is larger than y r s p / N o P  or when r,, > rsp. It is also 
seen that in general the linewidth narrows abruptly as soon 
as the threshold current is exceeded. When is unity and 
nonradiative recombination is negligible, however, the 
transition is smooth and a distinct threshold is difficult to 
identify. This is in complete agreement with the results in 
the last section. 

C. Cavity Constraints 
As mentioned in the first paragraph of Section 11, the 

rate equations ( 1 )  and ( 2 )  are only valid in this simple 
form if the dipole decay time r d  is much shorter than rsp 
and rp. This is usually assumed to be the case, and we 
will now show that in a microcavity laser it is actually 
difficult to break this condition on rp. 

The round-trip gain in any laser must roughly equal the 
round-trip loss. Thus, in a symmetric laser with mirror 
reflectivity R we have 

R2 exp (2ylL)  =. 1 .  (36) 

From this equation we can express yI L in the mirror trans- 
mittivity as 

y I L  =. -In ( R )  = T. (37) 

Using (35) and assuming that L / h  is roughly unity one 
gets 

(38) Y 1  T - << -. 
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Fig. 6 .  The linewidth versus the pump current for different laser sttuc- 
tures. The parameters in (a)-(c) correspond to those irl Fig. 4(a)-(c), re- 
spectively. The linewidth enhancement parameter 01 has been assumed to 
be zero. The dashed line represents the ideal linewidth limit. 

Putting typical numbers for a semiconductor material into 
(38), U = 300 THz, Td = s, we find that T must be 
larger than 0.3 to break the above condition. To express 

the condition in terms of the cold (and empty) cavity Q, 
value we use the relation Q, = 2av /y  and get 

e,. < 2 ~ ~ 7 , ~ .  (39) 
For the same numbers used above, the cavity Q must be 
less than roughly twenty before we expect the rate equa- 
tions to lose validity. 

V. CURRENT MODULATION CHARACTERISTICS 

The microcavity semiconductor lasers also promise to 
have a large modulation bandwidth, both below and above 
threshold. Below threshold, the modulation speed is lim- 
ited by the spontaneous emission lifetime. As has already 
been discussed, one should be able to shorten the spon- 
taneous emission lifetime substantially in a well designed 
and fabricated three-dimensional cavity. This immedi- 
ately leads to a wider modulation bandwidth without any 
penalty in terms of higher threshold currents, as the 
threshold current is independent of rSp as long as ( is 
small. However, since 4 is proportional to p ,  the require- 
ment that ( remains small will be tougher to accomplish 
since 0 in general increases if the spontaneous lifetime is 
increased. Above threshold, the modulation bandwidth is 
limited by either the stimulated decay rate, or the cavity 
decay rate, depending on which of them is the slowest 
process. Pumping sufficiently hard, the stimulated decay 
rate can always be made faster than the cavity decay rate. 

The mode volume of a single transverse mode micro- 
cavity laser is roughly h / L ,  smaller than that of a con- 
ventional semiconductor laser, where L, is the cavity 
length of the conventional laser. The active layer areas 
perpendicular to the injection current flow will have the 
same ratio. However, the threshold current may drop 
faster than this ratio, because the increase of 0 is not sim- 
ply due to the fact that we have fewer modes in the cavity 
as the volume decrease. With a clever cavity design we 
can also selectively alter the decay rates of the different 
modes in a favorable way. Thus, at a given allowable cur- 
rent density per unit active area, one should be able to 
pump higher above threshold. Since the cavity area to vol- 
ume ratio will increase as the cavity is made smaller, one 
should in principle be able to pump even harder, if the 
device dissipates heat into all three dimensions. 

To find the small-signal injection current modulation 
response, we separate the injection current, the photon 
number and the free-carrier number into a steady-state 
term (indexed ss) and a fluctuating terms as Z = I,, + AZ, 
p = p , ,  + A p ,  and N = N , ,  + A N .  Inserting these into 
the rate equations we get the steady-state solution already 
discussed, plus a new set of dynamic equations. Linear- 
izing the dynamic equations and Fourier transforming one 
gets the intensity modulation response function 
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where $2 is the angular frequency. Inserting the values for 
p,,, and N,, derived from Section 111, the expression for 
the modulation response becomes messy. Therefore we 
don't give the expression for the modulation response as 
a function of the steady-state injection current and fre- 
quency, but restrict ourselves to plotting the absolute 
square of the normalized intensity modulation response as 
a function of frequency with I,, as a parameter. The mod- 
ulation response has been normalized by multiplying it by 
I,, / p s s  so that the response function expresses the relative 
photon number modulation in the relative current modu- 
lation. Thus, if the normalized response function is unity, 
a 10% current modulation will result in a 10% photon 
number (or output power) modulation. In Fig. 7, we have 
plotted the absolute square of the normalized intensity re- 
sponse function for different sets of microcavity semicon- 
ductor laser parameters at different pump levels. All la- 
sers behave essentially equal, below and near threshold 
the modulation response cuts off around the inverse of the 
spontaneous emission lifetime. Pumping harder and harder 
the modulation bandwidth will increase until its cutoff 
value reaches the inverse of the cavity lifetime. This is 

the ultimate limit. What is worth noticing is that for a 
laser with 0 = 1 and y = 10l2 cm-I, one reaches this 
ultimate bandwidth at an injection current of around 1 mA, 
less than a typcial threshold current for a conventional 
semiconductor laser! 

VI. BETA MODULATION CHARACTERISTICS 
An interesting alternative to modulating the intensity 

by modulating the current, is to modulate the intensity by 
varying the spontaneous emission coupling ratio 0 [17]. 
Above threshold nothing would be gained by 0 modula- 
tion; direct current modulation would be much simpler. 
Below threshold, however, one could get a very large 
modulation bandwidth provided that one could change 0 
without affecting the spontaneous emission lifetime. As 
can be seen from (l), below threshold where the last term 
on the RHS is negligible, the population inversion is in- 
dependent of 0. Thus, by modulating the spatial distri- 
bution of the spontaneous emission by varying 0, the 
modulation bandwidth would be proportional to the cavity 
decay rate. Following the same procedure as in the last 
section, one can derive the Fourier transform of Ap(Q). 
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Fig. 8. The normalized intensity modulation response versus the modula- 
tion frequency for beta modulation. The high response function for I = 0. I 
mA is due to the onset of oscillation, so a p versus (3 curve would have a 
kink at this value. 

was also shown that only when the active volume is 
smaller than the above value is it possible to reduce the 
threshold by increasing p. 

The linewidth high above threshold was shown to be 
equal to $1 + 5 ) / 2 ~ p .  Thus it is essential to keep { 
below unity to keep the linewidth near the ideal limit. In 
most cases there was seen to be distinct linewidth narrow- 
ing near the threshold point. When f i  is near unity, how- 
ever, the narrowing was very slow which makes it diffi- 
cult to define an unambigous threshold current. 

The intensity modulation response was shown to be not 
much different from a conventional semiconductor laser. 
It is plausible that one may be able to pump microcavity 
lasers higher above threshold than conventional semicon- 
ductor lasers can be driven, so there is good hope that the 

In Fig. 8,  we have plotted the absolute square of the 
normalized beta modulation response function (the abso- 
lute square of (41) multiplied by f i l p , , ) .  As long as { is 
small the bandwidth is roughly given by y as can be seen 
from the denominator in (41). 

In theory one could modulate 0 by shifting the wave- 
length of the emitted light out of the cavity resonance 
using, e.g. ,  the quantum confined optical Stark-shift ef- 
fect [18], [19]. In a three-dimensional cavity this would 
generally lead to modification of the spontaneous emis- 
sion lifetime, but in a planar (one-dimensional) structure, 
the spontaneous lifetime varies much slower than /3 when 
the emission wavelength is tuned out of resonance with 
the cavity. Possibly, one could design a structure where 
only /3 varies and T , ~  remains constant. However, the 
reader should bear in mind that the requirement of con- 
stant spontaneous emission lifetime and the difficulties in- 
volved with electrical time constants associated with the 
Stark shifting will probably set the upper limit to the mod- 
ulation speed substantially lower than y for yet some time 
to come. The reader should also be warned that the anal- 
ysis presented here does not take nonlinear gain phenom- 
ena into account. These may also limit the modulation 
bandwidth. 

VII. CONCLUSION 
The static and some of the dynamic characteristics of 

semiconductor microcavity lasers were investigated using 
rate equations. It was shown that in general, the different 
threshold conditions lead to roughly the same prediction 
for the threshold current. The only exception was when p 
is close to unity, nonradiative recombination is negligi- 
ble, and the active volume is greater than ~ , ~ y / N ~ p .  It 

modulation bandwidth of microcavity lasers can be made 
wider. Two possibilities to increase the modulation band- 
width when operating below threshold were outlined. One 
was to decrease the spontaneous emission lifetime by cav- 
ity QED effects, the other was to modulate p instead of 
the injection current. 
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