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Analysis of Semiconductor Microcavity Lasers Using
Rate Equations

Gunnar Bjork and Yoshihisa Yamamoto, Member, IEEE

Abstract—The rate equations for a microcavity semiconduc-
tor laser are solved and the steady-state behavior of the laser
and some of its dynamic characteristics are investigated. It is
shown that by manipulating the mode density and the sponta-
neous decay rates of the cavity modes, the threshold gain can
be decreased and the modulation speed can be improved. How-
ever, in order to fully exploit the possibilities which the modi-
fication of the spontaneous decay opens up, the active material
volume in the cavity must be smaller than a certain value. Sub-
jects covered in the paper are threshold current using different
definitions, population inversion factor, L-/ curves, linewidth,
and modulation response.

1. INTRODUCTION

ODIFICATION of the spontaneous emission rate of

an excited atom or an electron-hole pair opens up
new possibilities in optical engineering. Both in the mi-
crowave region [1]-[4] and in the optical region [5]-[7],
alteration of the spontaneous emission rate, and related
phenomena, such as Rabi oscillation, have been demon-
strated long ago. In the last few years several groups have
been studying the effect of spontaneous emission en-
hancement/suppression in semiconductor material de-
vices [7]-[10].

A rate equation analysis of an ideal microcavity laser
with perfect population inversion, predicts that the thresh-
old pump rate may be several orders of magnitude lower
than that of a conventional laser [8]. The reason for this
is that in an ideal microcavity laser the power dissipation
of the active material is dominated by photon emission
into one of the cavity modes. However, if the inverted
medium is made from a semiconductor material, it is dif-
ficult to accomplish the perfect inversion assumed in an
ideal laser. Furthermore, in order to fulfill the Bernard-
Duraffourg condition [11], one needs a certain density of
electrons and holes in the conduction and valence band,
respectively. Some people have claimed that the need to
fulfill this condition will seriously impair the potential for
low threshold currents in semiconductors lasers. Others
have said that in reducing the size of the laser, and thus
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the active material volume, the threshold current will go
down, this being a pure size effect that has nothing to do
with the alteration of the spontaneous emission rate. Oth-
ers yet, have claimed that the threshold reduction can only
be explained by cavity QED. The first purpose of this pa-
per has been to clarify these issues. It will be shown that
the transparency free-carrier density will set a lower limit
to the threshold current, but only if the active material
volume is ‘‘large.’” In Section III we will state a condition
when the transparency free-carrier density does limit the
threshold current reduction. This condition will define the
term ‘‘large.”” We will also show that as long as the active
material is ‘‘large’’ the decrease in threshold current with
volume can be described as a pure size effect. However,
when the active volume is ‘‘small,”’ the threshold current
can be decreased without decreasing the size of the cav-
ity. (In [5], increase of the spontaneous emission rate for
a constant cavity length is discussed.) This can be viewed
as an cavity QED effect because it comes purely from the
field-atom interaction modification by the cavity.

The second purpose of this paper is to show what to
expect from a typical microcavity laser. We have calcu-
lated, e.g., L-I curves, linewidths, and modulation re-
sponses for both ideal and nonideal devices. It is shown
that present devices operate far from the ideal limits
mainly because of nonradiative recombination processes

II. RATE EQUATIONS

We describe the free-carrier density N in the active me-
dium, and the photon population p in the cavity with rate
equations. In a single-mode laser this is justified as long
as the dephasing time of the active material dipole mo-
ment is much shorter than both the cavity photon lifetime
7, and the spontaneous emission lifetime 7. If this is the
case, the dipole moment coupling between the inverted
medium and the photons can be eliminated adiabatically
[12]. We will come back to the practical constraints the
lifetime condition puts on a microcavity laser. Assuming
that the dipole moments can be eliminated adiabatically,
the rate equations can be written
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Here, I is the injection current, ¢ is the electron charge,
V is the volume of the active material (and this can be
substantially smaller than the cavity volume), 7, is the
nonradiative recombination lifetime, g is the active ma-
terial gain when it sits in the cavity ins™' and v = 1/7,
is the cavity decay rate in s™'. The spontaneous emission
lifetime is defined as

mp= 1[4 3)

where A, is the spontaneous emission rate of the active
material into mode i. Note that the different rates A; may
differ due to the presence of a cavity. If the cavity band-
width of a mode is larger than the gain bandwidth, the
atoms may see a modified vacuum-field intensity in this
mode (or rather quasi-mode), and the cavity decay rate
into the mode will be modified. If the free spectral range
of the cavity is smaller than the gain bandwidth, so there
are many cavity modes within the gain bandwidth, the
decay rate will be equal for all modes. In the former case,
the rate A4;, as compared with the rate if the cavity was not
present, can be suppressed by a factor 1 — R or enhanced
with a factor 1 /(1 — R) where R is the reflectivity of the
cavity mirrors [5], [10], depending on whether the atomic
transition frequency coincides with the cavity resonance
frequency or not. The spontaneous emission coupling ra-
tio B is defined as

B = A2 A @

where index O indicates the optical mode which will even-
tually lase.

To describe the relation between the optical gain and
the free-carrier density in the semiconductor we have as-
sumed a linear gain model

g =8'N— Ny ©)]

where N, is the transparency carrier concentration of the
gain material. This model, chosen for simplicity, should
bring out at least the qualitative behavior of free-carrier
concentration on the gain, and around N = N, it should
give a good quantitative agreement.

From Einstein’s relation between the A and B coeffi-
cients it is clear that for every mode, the spontaneous
emission equals the stimulated emission when the average
photon number in the mode is unity. Inspecting (2), using
(5) we get

g8 = BV/1g. (6)

From (1), (2), (5), and (6) we can calculate some of
the static and dynamic properties of the microcavity semi-
conductor laser. This is the topic of the subsequent sec-
tions. Before doing so, we will briefly discuss sponta-
neous emission rate enhancement. As can be seen from
(4), there are several ways of increasing the spontaneous
emission coupling ratio. The first is simply to reduce the
number of modes that couples to the gain medium. The
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Fig. 1. Schematic example of one-dimensional (left) and three-dimen-
sional (right) microcavities. The active layer is usually thin and the Bragg
mirrors passive, but this need not be the case.

mode density per unit frequency can be written
8WK.n2ng
N

where V. is the cavity volume, # is the refractive index of
the cavity material, n, is the group index of the modes
with an optical frequency =v, and A, is the vacuum
wavelength of these modes. If all modes have the same
decay rate, the spontaneous emission coupling ratio will
be roughly inversely proportional to the cavity volume.
For a fixed number of interacting modes, 8 will increase
if the spontaneous emission rates into other modes are
suppressed, or the spontaneous emission rate into the la-
sing mode is enhanced. The enhancement/suppression is
a true cavity QED effect and requires, as explained above,
that the gain bandwidth is at least smaller than the cavity
free spectral range. Depending on the balance between
the three processes described, the spontaneous lifetime
may either decrease or increase. In a planar (one-dimen-
sional) dielectric cavity structure (Fig. 1), 7, will gen-
erally increase slightly when 8 is increased [9]. On the
other hand, in a well designed, laterally guiding (three-
dimensional) microcavity 7, can be reduced substantially
when ( is increased [10]. In our rate equations it is under-
stood that 7, is the spontaneous lifetime of the active ma-
terial when it sits in the cavity. The cavity spontaneous
emission lifetime 7y, may therefore differ substantially
from that of the bulk active material.

p = (7

III. THRESHOLD BEHAVIOR

One of the most prominent and perhaps most promising
features of the microcavity lasers is their potential of very
low threshold current operation. In the first report to point
this out, the authors dubbed them ‘‘virtually zero thresh-
old lasers’’ [13]. While the devices certainly can have low
threshold currents, it may be in the sub p4 domain, it is
certainly finite and, in general, well defined as will be
shown. In semiconductor microcavity lasers, however, the
picture is somewhat more complicated due to the fact that
to invert the medium, the free-carrier density has to ex-
ceed a certain level. The question has been raised if this
will prohibit very low threshold semiconductor lasers. As
will be shown in this section, the answer to the question



2388 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 27, NO. 11, NOVEMBER 1991

lies partly in how large the laser active volume is, and
partly in how the threshold current is defined. We will
look at three different threshold definitions and compare
the resulting threshold currents.

The first and most widely used definition for the thresh-
old current is that the net stimulated gain should equal the
loss. Pumping harder, the net stimulated emission will
rapidly become the dominant emission source and lasing
will occur. Inspecting (2) we find that this is equivalent
to

gV
v = (Nm — No). (3

sp
From (2) it can be seen that the net stimulated steady-state
gain can only equal the loss at an infinite photon number.
Thus, strictly speaking, (8) is unphysical. However, in
applying (8) it is implicitly assumed that when calculating
the free-carrier density, and thus the gain, stimulated re-

combination can be neglected. Doing so we get

1

N ——7—"— 9
qV(l/TSp + I/an)
so that
TopY 1
Nat = Ng + —= = N[ 1 + = 10
th 7 0< S) (10)
where £ is a dimensionless parameter defined by
NyBV
£ = LAy (11)
yTsp

Note that £ can be interpreted as the photon number in
the lasing mode when N = N, that is, when the active
medium is transparent. At this inversion level there is no
net stimulated emission, and £ is the ratio of spontaneous
photon emission into the lasing mode Ny V8 /7, and the
cavity loss rate y. As will be shown, if this number is
larger than unity we need only to increase the free-carrier
density slightly above the transparency value to get sub-
stantial stimulated emission. In this case the threshold is
mainly determined by the material properties. If, on the
other hand, £ is much smaller than unity, we need to raise
the free-carrier density substantially to offset the cavity
loss, so the threshold will be mainly determined by the
cavity properties.

Before calculating the threshold current, the population
inversion factor will be derived. Using the definition ng,
= N/(N — Ny), and (10), the population inversion factor
when (8) is fulfilled can be expressed

”sp,thl =1+ E (12)

As the photon number implicitly has been assumed to be
infinity when (8) is fulfilled, this is also the population
inversion factor of a microcavity laser well above thresh-
old. In Fig. 2 the function has been drawn using dashed
lines. It is clear that the active volume should be smaller
than y7,,/Nyp to assure a low population inversion pa-
rameter at and above threshold.

104 . 10*

= i
- =3
=} -
= 100 y = 10757 10° 2
2 9 4 e

- 10" ]
= Tp = 107 s 3 g I , 3
®10°F Ny=10%em o 102 %
I iy - 54
) uZ P =
E g 0 g

-
g 10 - 2
= ~ =
g = v=10"em? T =
=1 = = 1 a
2 S
£ [
10" - - - 10"
10° 10* 103 107 0.1 i

. - " .
S coupling ratio §

Fig. 2. The population inversion parameter at threshold (right vertical axis)
versus the spontaneous emission coupling ratio, for two different active
volumes. The nonradiative recombination rate has been assumed to be neg-
ligible compared to the radiative recombination rate. The dashed line is for
the threshold definition (8), the solid line is for the definition py, = 1., .
The solid line also shows the photon number at threshold (left vertical axis).

Using (9) and (10) we find that the threshold pump cur-
rent will be

m=2a+p <1 +?> (13)

B nr

Inspecting this equation one can conclude that irrespec-
tive of the value of £, there will always be a threshold
current penalty as soon as 7,, becomes smaller than 7.
This is expected, and it is presently a major obstacle to
overcome in the device fabrication process, as the re-
ported 7, values of laterally guided (three-dimensional)
semiconductor microcavity lasers [14] are at least an or-
der of magnitude smaller than the corresponding 7. If
we assume that we have an ideal active material so that
we can neglect the nonradiative recombination, the
expression for the threshold current will consist of two
terms. The left term depends mainly on the properties of
the cavity (8 and v), and the right term (using the defi-
nition of ¢ and factoring out 8 and ) depends mainly on
the properties of the gain medium (Ny, V, and 7). If &
becomes sufficiently small (13) reduces to

qy Tsp
I = =1 +—).
"o ( an>

On the other hand, if £ >> 1, the threshold current can
be approximated by

NoV 7
Iy =~ 20 <1 +—51’>v
T, Tar

p

(14)

(15)

If we reduce £ by reducing the volume of the active
medium, the threshold current will decrease until the left
term in (13) dominates. This threshold reduction is mainly
a classical effect. We make the number of atoms smaller
and thereby make the injection current to sustain the spon-
taneous emission into all nonlasing modes negligible
compared to the lasing mode losses. Equation (14) is pro-
portional to 1/8 and sets the fundamental limit for the
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threshold gain for a given cavity. If nonradiative recom-
bination is negligible, the ultimate threshold current is in-
dependent of both 7y, Ny, and V. It should be pointed out
that in a conventional semiconductor laser in which the
active material fills a substantial part of the cavity vol-
ume, 8 may be in the order of 107> to 107, so the poten-
tial threshold current reduction is four to five orders of
magnitude if we can just keep £ small as 8 is increased.
Reduction of the threshold current by increasing 8 can be
considered mixture of a classical effect and cavity QED
effect. If 8 simply reduces inversely with the cavity vol-
ume, as it will in a macroscopic or an ill designed micro-
cavity laser, the reduction can still be viewed as an clas-
sical effect. The number of modes interacting with the
active material has simply been reduced. If 8 can be in-
creased faster than the inverse of the cavity volume, or
without changing the cavity volume at all, it is a cavity
QED effect. The presence of the cavity has selectively
increased/decreased the coupling between the atoms and
the vacuum modes. A plot of the threshold current (13)
as a function of 3 is shown by the dashed dotted lines in
Fig. 3 for typical microcavity semiconductor laser param-
eters. It can be seen in the figure that as long as § < 107}
so that £ < 1 the threshold current is approximately given
by (14) for the laser with the larger active volume. When
8 > 1073, the threshold current is roughly given by (15).
The laser with the smaller active volume follows (14) as
long as 8 < 0.1.

We note that if we have an ideal microcavity laser, with
no nonradiative recombination, £ =~ 0 and 8 = 1, then
(14) simplifies to

Loy = qv. (16)

This equation has a simple interpretation. In such an
ideal laser the only loss mechanism is photons emitted
into the lasing mode. The photon emission rate is exactly
the rate at which we must inject new carriers in order to
compensate for the loss. Since the photon loss rate in this
case is yp, (16) tells us that the mean photon number at
threshold is unity for a truly ideal laser!

Noting that the conventional definition of the threshold
(8) strictly speaking is unphysical, in that the stimulated
emission can never quite compensate for the optical loss,
a better definition of the threshold would perhaps be that
the net stimulated emission (that is, the stimulated emis-
sion minus the stimulated absorbtion) shall equal the
spontaneous emission. The reason this (in our opinion,
better) definition is seldom used, is that the definition in-
volves the photon number and not simply the gain. Thus,
a nonlinear analysis must be undertaken. As will be shown
below, the two definitions will give the same threshold
current to within a factor of two, the new definition giving
the lower estimate. Looking at (2), (5), and (6) at steady
state, one easily finds that the new definition leads to a
threshold photon number given by

Nin

Pw2 = —*N‘h ~ N,

an

= nsp.lh2~
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Fig. 3. Threshold current versus spontancous emission coupling ratio.
Dashed-dotted lines correspond to the threshold definition that the net stim-
ulated gain equals the loss, dashed lines correspond to py, = n, ., and
solid lines correspond to the definition p, = 1.

Here, Ny, is the free-carrier concentration at threshold and
Ny w2 is the population inversion parameter at this thresh-
old. Inserting this equation in (2) one can express the
threshold photon number in the rate equation parameters
as

Vv
4+ 2NoBY

YTsp

P2 = 1 =1+ 2¢. (18)
This is always a finite number. Per definition, it is also
the population inversion parameter at the new threshold.
The function is drawn in Fig. 2 using solid lines. Solving
(2) for the free-carrier concentration at threshold, one ar-
rives at the equation

N, 1
Nlh2=? 2+§ .

From this equation it can be seen that with the threshold
definition (17) the free-carrier density at threshold will
always be larger than the transparency density N,. Plug-
ging (18) and (19) into (1) one finally finds the threshold
current to be

CI’Y"sp\mz Tsp
Ipp=—— (1 +8—
T < ’ >

-

28) {1 Ts"}
=35 0+ s)< +B+7m>.

In Fig. 3 the threshold current according to the definition
in (17) is plotted using dashed lines. The equation will
give roughly the same result as (13) when £ >> 1 and it
will be a factor of two smaller than (13) when £ << 1.
A third threshold definition used is that the stimulated
emission rate shall simply equal the spontaneous emission
rate at threshold. The rationale behind this definition is
that at this pump level, half of the photons emitted into
the mode will be emitted coherently, the other half will
be added noncoherently. Pumping harder, both the co-
herence properties and the quantum efficiency will im-
prove rapidly due to the rapidly increasing stimulated
emission. From the Einstein relation already mentioned,

(19)

20)
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this definition of the threshold will imply that the mean
photon number in the mode at threshold is unity:

Pw3z = 1. Q2N

Using this definition in (2) at steady state, we immedi-
ately get the free-carrier density at threshold

_ TspY _& 1
Nps = <N0+ 3V>/2 =5 (1 + £>.

Somewhat surprisingly we find that using the definition
(21) of pyy, when B and V are sufficiently large (so that &
is much larger than unity), the threshold free-carrier con-
centration will be Ny, = N,/2. The active medium has
higher stimulated absorbtion than emission, but due to the
spontaneous emission, the mean photon number in the
mode will still be unity. The laser will thus emit photons
at a rate v.

The population inversion factor at threshold, using (21)
as the threshold definition can be expressed

1+ ¢ {1 + 2¢
Rep.thy = =

22

if{ <1

.3
1 -4 -1 if& > 1 @3

The fact that the population inversion factor is —1 when
¢ is large leads us to the conclusion that this threshold
definition may not be suitable when £ > 1. Having this
in mind, and using (1) and (21), we find that the threshold
pump current using (21) will be

T4 NoV 7y
Ith3=g[1(l+6+—p>+—<1—3+—p>w
2 18 Tor Tsp Tor/

av s o\
gl zedr D) o
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In Fig. 3 the threshold current according to the definition
in (21) is plotted using solid lines. Equation (21) will also
give roughly the same result as (13) when £ >> 1 and
will be a factor of two smaller than (13) when § << 1.
The only case where there is a substantial discrepancy be-
tween the two former threshold definitions and the last
one is when both the active volume and the spontaneous
emission coupling ratio are large, and the nonradiative re-
combination is negligible. The difference is easily ex-
plained by looking at the photon number in the mode at
the threshold defined by (17), remembering that in this
regime the overall quantum efficiency is roughly unity
(Fig. 2). To increase the photon number by a factor of
ten, one has to increase the pump current by a factor of
ten. At 8 = 1 the threshold photon number for the two
threshold definitions differs by roughly a factor of 2000,
so the threshold currents differ with the same factor.
After computing the different threshold currents we can
make some comments on them. We find that as long as £
is small, they predict the same threshold current within a
factor of two. When £ is larger than unity they still agree
well, except when 8 is very close to unity. Within this

regime it is difficult to make a clear definition when lasing
begins since the transition from LED to laser behavior
rather smooth. We note that the threshold definitions 1
and 2 will make a much more conservative estimate of the
threshold current in this regime.

We would like to conclude this section with two nu-
merical examples, one for a conventional semiconductor
laser and one for a microcavity laser. A conventional
GaAs semiconductor laser has a cavity volume of approx-
imately 1 X 2 X 300 um. The active material volume can
be estimated to be one tenth of this volume. The trans-
parency free-carrier density in GaAs is approximately 10'®
cm™, the spontaneous emission lifetime is 3 ns, the re-
fractive index is 3.5, and the FWHM of the optical gain
T is around 20 ns at an emission wavelength of 800 nm
[11]. The loss rate for a cleaved facet FP laser is roughly
40 cm ™" or 4 x 10" s7!. Assuming that the decay rate
into every mode is the same, we can estimate the spon-
taneous emission coupling ratio using (7) to be § =
NNo/87V, T, where X is the wavelength in the GaAs cav-
ity and A is that in free space. We have also approxi-
mated the group index with the bulk refractive index of
GaAs. Using the figures above we find that 8 is approxi-
mately 3 X 107° and that £ = 1.6. This is reasonable,
since the population inversion parameter (which can be
expressed 1 + £) for such structures is often reported to
be in the range 2-3. Nonradiative recombination can usu-
ally be neglected in these lasers, using (20) we find the
threshold current for the device to be 5.5 mA. This
roughly the correct value. From the value of ¢ we find
that the threshold current could be reduced to merely half
its calculated value by simply making the active volume
smaller.

The next example we will calculate is a 5 pm diameter
Ing ,Gag 3As single quantum well laser emitting at 980 nm
[14]. The QW is 80 A thick and we have estimated the
cavity length to be ten wavelengths. The cavity volume is
thus around 65 um’® and the active volume is 0.15 pm®.
The Bragg mirror transmission was 0.1%, so the decay
rate can be estimated to be 3.3 x 10'% s~!. We assume
that the gain linewidth, the spontaneous emission rate, and
the transparency free-carrier density are the same as in the
last example. Since the free spectral range of the cavity
is roughly equal to the gain bandwidth, the reduction of
the threshold current for this device is not a cavity QED
effect, in spite of its small size. We can again assume that
the decay rates for all modes are equal and we get 8 =
3.6 x 107 and £ = 5.4. The nonradiative lifetime is
stated to be shorter than 100 ps, we will assume the value
50 ps. From (20) the threshold current is found to be 0.2
mA. This is almost an order of magnitude smaller than
the reported value of 1.5 mA. Due to the uncertainties in
the estimated values of N, 7, and 7,, we cannot expect
a perfect agreement between theory and experiment. What
the example shows, however, is that again the threshold
current probably could be reduced by making the active
volume smaller even though cavity QED plays no role for
this device.
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IV. STEADY-STATE CHARACTERISTICS

A. Output Power

The output power characteristics of a microcavity laser
is radically different from an ordinary laser. If the micro-
cavity laser supports only one mode within the its gain
bandwidth, and if nonradiative recombination is negligi-
ble, then photon emission is the only means of power dis-
sipation and the quantum efficiency of the device must be
unity both below and above threshold. This was noted
long ago and one then expects a device with a smooth
transition from LED operation to laser operation.

Using (1), (2), (5), and (6) one can express the photon
number as a function of the pump current. However, for
mathematical simplicity, it is easier to express the pump
current as a function of the photon number. The result is

_w|_p
= s _1+p(1+£)<1

In Fig. 4, input versus output curves are drawn for three
different combination of parameters, and it can be seen
that except when 3 = 1 there is a sharp increase in the
photon number (and output power) as soon as the photon
number exceeds unity. This is an argument for the thresh-
old definition (21). When 3 = 1 the transition from below
to above threshold is smooth, provided that the nonradia-
tive recombination is negligible. It is thus difficult to make
an unambiguous definition of the threshold pump current
based on the input-output or the gain characteristics when
B8 = 1. In drawing the output power axis we have as-
sumed that there are no optical losses except mirror losses.
If one wishes to include other optical losses, one can sim-
ply multiply the plotted output power with (y — 7o) /7.
where v is still the total optical decay rate, and v, is the
total decay rate into all other modes except the lasing
mode. Of course, when the injection current is many times
its threshold value, (25) simplifies to

1

T
+ 6p + 7) - EBP] (25)

nr

I = gyp. (26)

The fast stimulated emission decay rate combined with
the assumption that mirror loss is the only optical decay
process will assure the unity quantum efficiency mani-
fested by (26). In the limit 3 = 1 and 7, >> 7, one also
arrives at (26) from (25) at all pump rates, as expected.

B. Linewidth

To get information about the frequency noise spectrum
of microcavity lasers, one has to start with optical field
equations and subsequently assign the correct noise
sources. This is beyond the scope of this paper, but to at
least get a feeling for the spectral purity of the microcav-
ity semiconductor lasers we have calculated the line-
width, using an equivalent electrical circuit model (Fig.
5) described in [15]. This model neglects the gain-refrac-
tive index coupling of the active material and thus under-
estimates the linewidth above the threshold by a factor 1
+ o, where « is the linewidth enhancement parameter.
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Fig. 4. The mean photon number in the mode (left axis) and the corre-
sponding total output power (X = 1 um, right axis) versus the pump cur-
rent. In (a) and (c), £ is always smaller or equal to unity, in (b) £ is larger
than unity when 8 > 10 3. In (a) and (b) nonradiative recombination is
negligible, but in (¢) it dominates below threshold.

Fig. 5. Laser equivalent electrical circuit for linewidth calculation. The
noise currents i, and i,, associated with the load conductance G, and the
negative conductance G,,, respectively, are assumed to have flat spectra
within the cold cavity bandwidth.

However, the model is simple to use and brings out the
main features of the spectral linewidth of microcavity la-
sers. With this said, the reader is alerted that in order to
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properly include the effect of «, (31)-(33) should be mul-
tiplied by 1 + «?.

Au=l=i<l +@>‘
Q 27C GO

Here, Q is the total Q value of the cavity including all
gain and loss mechanisms, G is the circuit conductance
due to the output coupling loss, C is the circuit capaci-
tance, and G,, is the negative conductance representing
the net stimulated emission. The noise currents associated
with the load and the negative conductance are i and i,
respectively. The only assumption we have to do about
these are that their spectral densities are constant over the
cavity bandwidth. It is straight forward to identify the out-
put coupling loss rate vy with the ratio G,/C. The ratio
between the photon loss and the net stimulated emission
can be found inspecting (2) and the result for the line-

@n

width is
1 14
Av=—(y-"=W-Np). (28)
27 Top
Far below threshold where N = 0 (28) reduces to
1 VN,
Av =~ — <7 + M) (29)
2w Tsp

This is the cold cavity bandwidth of a cavity with absorb-
ing material inside, and it is wider than the cold cavity
bandwidth of the empty cavity yv/2x. To get an expres-
sion for the other limit, above threshold, we observe that
in steady state we have

514 BVN

—(N-N) =y~ ——

Tsp TspP
from (2). Using this relation in (28) and noting that per
definition N = ny,(N — N) one gets

_ ansp(N - NO) Yhsp
- N 2mp

(30)

Ay (31

2n74p
where in the last step we have used (30) and the fact that
high above threshold the last term of the right-hand side
of (30) vanishes. This equation is an equivalent formu-
lation of the Schawlow-Townes linewidth formula. High
above threshold we can replace ny, using (12), and we get

2+ 9
2ap

Ay (32)
In order to keep the linewidth low it is preferable to keep
£ below unity.

To write (31) in a more conventional way we introduce
the total emitted optical power P, = hypy where h is
Planck’s constant. We also introduce the cold (and empty)
cavity bandwidth Av. = y/27. One finds that (31) is
equivalent to the expression

27rhv(Au(‘)2nSp

Ay = ——— 33
v P, (33)

Equation (27) is known to give a correct result irre-
spective of the particular laser structure (Fabry-Perot,
distributed Bragg reflector, etc.) if v,L < 1 where v, is
the optical loss per unit cavity length, and L is the cavity
length [16]. We can express 4, in vy as

Y= v/v, (34

where v, is the group velocity of the counter-propagating
waves inside the cavity. Using the relation v, = Ay, where
\ is the wavelength in the cavity, we find that
yL
nk = v N
Since, per definition in a microcavity laser, the last factor
in (35) is of the order of unity, ,L will be smaller than
unity as long as the decay rate is smaller than the optical
frequency. This is true even for moderately (50 %) reflect-
ing cavity mirrors which proves the validity of using (28)
for microcavity lasers.

In Fig. 6, the linewidth of different microcavity semi-
conductor lasers are plotted versus the pump current using
(28). It has been assumed that optical losses apart from
mirror losses are negligible. From the curves we see that
most microcavity configurations will come close to the
ideal limit where ng, = 1 and the overall quantum effi-
ciency is unity (P, = Ihv /q). The only exception, as fore-
seen in the last section, is when the active volume of the
laser is larger than 'yTSP/NOB or when 7, > 7. It is also
seen that in general the linewidth narrows abruptly as soon
as the threshold current is exceeded. When g is unity and
nonradiative recombination is negligible, however, the
transition is smooth and a distinct threshold is difficult to
identify. This is in complete agreement with the results in
the last section.

(35)

C. Cavity Constraints

As mentioned in the first paragraph of Section II, the
rate equations (1) and (2) are only valid in this simple
form if the dipole decay time 7, is much shorter than 7,
and 7,. This is usually assumed to be the case, and we
will now show that in a microcavity laser it is actually
difficult to break this condition on 7,.

The round-trip gain in any laser must roughly equal the
round-trip loss. Thus, in a symmetric laser with mirror
reflectivity R we have

R?exp 2y,L) = 1. (36)
From this equation we can express <, L in the mirror trans-
mittivity as
L= —-InR) = T. 37N
Using (35) and assuming that L/X is roughly unity one
gets
Y

1
T~=—- << —.
v VT,

(38)



BJORK AND YAMAMOTO: ANALYSIS OF SEMICONDUCTOR MICROCAVITY LASERS

Linewidth (MHz)

(a)

B=1_,05
108
0.1
107 2
_ 10
= 10° 3
= 10 s
5 — B=10
> 10 -~ - 3
< poa T~ 10
£ 10°f y =10 ~
- 2
5 10’} 7= 10%s ~Je .
H ~
5 102 Ty > Ty AN
10 N, = 1098 cm 3 10 N
LY v=10"em?
IOV‘ -6 ‘5 -4 . 1 o~
10% 10° 10" 10° 10?7 100 1 10 10?

Injection current (mA)
(b)

Linewidth (MHz)

1% 107 107 107 1 10 10

Injection current (mA)

(c)

Fig. 6. The linewidth versus the pump current for different laser struc-
tures. The parameters in (a)-(c) correspond to those in Fig. 4(a)-(c), re-
spectively. The linewidth enhancement parameter o has been assumed to
be zero. The dashed line represents the ideal linewidth limit.

Putting typical numbers for a semiconductor material into
(38), » = 300 THz, 7, = 10" 5, we find that 7 must be
larger than 0.3 to break the above condition. To express

2@ _
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the condition in terms of the cold (and empty) cavity Q.
value we use the relation Q. = 27v /7y and get

Q. < 2w, (39)

For the same numbers used above, the cavity Q must be
Jess than roughly twenty before we expect the rate equa-
tions to lose validity.

V. CURRENT MODULATION CHARACTERISTICS

The microcavity semiconductor lasers also promise to
have a large modulation bandwidth, both below and above
threshold. Below threshold, the modulation speed is lim-
ited by the spontaneous emission lifetime. As has already
been discussed, one should be able to shorten the spon-
taneous emission lifetime substantially in a well designed
and fabricated three-dimensional cavity. This immedi-
ately leads to a wider modulation bandwidth without any
penalty in terms of higher threshold currents, as the
threshold current is independent of 7., as long as ¢ is
small. However, since £ is proportional to 3, the require-
ment that ¢ remains small will be tougher to accomplish
since 8 in general increases if the spontaneous lifetime is
increased. Above threshold, the modulation bandwidth is
limited by either the stimulated decay rate, or the cavity
decay rate, depending on which of them is the slowest
process. Pumping sufficiently hard, the stimulated decay
rate can always be made faster than the cavity decay rate.

The mode volume of a single transverse mode micro-
cavity laser is roughly A /L, smaller than that of a con-
ventional semiconductor laser, where L. is the cavity
length of the conventional laser. The active layer areas
perpendicular to the injection current flow will have the
same ratio. However, the threshold current may drop
faster than this ratio, because the increase of 8 is not sim-
ply due to the fact that we have fewer modes in the cavity
as the volume decrease. With a clever cavity design we
can also selectively alter the decay rates of the different
modes in a favorable way. Thus, at a given allowable cur-
rent density per unit active area, one should be able to
pump higher above threshold. Since the cavity area to vol-
ume ratio will increase as the cavity is made smaller, one
should in principle be able to pump even harder, if the
device dissipates heat into all three dimensions.

To find the small-signal injection current modulation
response, we separate the injection current, the photon
number and the free-carrier number into a steady-state
term (indexed ss5) and a fluctuating terms as I = I, + Al,
p =Py + Ap,and N = N + AN. Inserting these into
the rate equations we get the steady-state solution already
discussed, plus a new set of dynamic equations. Linear-
izing the dynamic equations and Fourier transforming one
gets the intensity modulation response function

1/qV

ALQ) ]
Py -y + <% Lo

sp T

sp T:p Tar

(40)

Qrg,

) (o, N )
J BV (vs 0) J ( px\')

gV
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Fig. 7. The normalized intensity modulation response versus the modula-
tion frequency for direct current modulation. In (a) the parameters are those
of a conventional laser, in (b) the parameters are those of a 8 = 1 micro-
cavity laser, and in (c) the parameters are those of a § = 1 microcavity
laser with enhanced spontaneous decay rate.

where Q is the angular frequency. Inserting the values for
Dss» and N derived from Section III, the expression for
the modulation response becomes messy. Therefore we
don’t give the expression for the modulation response as
a function of the steady-state injection current and fre-
quency, but restrict ourselves to plotting the absolute
square of the normalized intensity modulation response as
a function of frequency with /;; as a parameter. The mod-
ulation response has been normalized by multiplying it by
15/ pys s0 that the response function expresses the relative
photon number modulation in the relative current modu-
lation. Thus, if the normalized response function is unity,
a 10% current modulation will result in a 10% photon
number (or output power) modulation. In Fig. 7, we have
plotted the absolute square of the normalized intensity re-
sponse function for different sets of microcavity semicon-
ductor laser parameters at different pump levels. All la-
sers behave essentially equal, below and near threshold
the modulation response cuts off around the inverse of the
spontaneous emission lifetime. Pumping harder and harder
the modulation bandwidth will increase until its cutoff
value reaches the inverse of the cavity lifetime. This is

the ultimate limit. What is worth noticing is that for a
laser with 8 = 1 and v = 10" ¢cm™!, one reaches this
ultimate bandwidth at an injection current of around 1 mA,
less than a typcial threshold current for a conventional
semiconductor laser!

VI. BETA MoDULATION CHARACTERISTICS

An interesting alternative to modulating the intensity
by modulating the current, is to modulate the intensity by
varying the spontaneous emission coupling ratio 8 [17].
Above threshold nothing would be gained by 8 modula-
tion; direct current modulation would be much simpler.
Below threshold, however, one could get a very large
modulation bandwidth provided that one could change 3
without affecting the spontaneous emission lifetime. As
can be seen from (1), below threshold where the last term
on the RHS is negligible, the population inversion is in-
dependent of 8. Thus, by modulating the spatial distri-
bution of the spontaneous emission by varying 3, the
modulation bandwidth would be proportional to the cavity
decay rate. Following the same procedure as in the last
section, one can derive the Fourier transform of Ap(Q).
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was also shown that only when the active volume is
smaller than the above value is it possible to reduce the
threshold by increasing (.

The linewidth high above threshold was shown to be
equal to y(1 + £)/2xp. Thus it is essential to keep &
below unity to keep the linewidth near the ideal limit. In
most cases there was seen to be distinct linewidth narrow-
ing near the threshold point. When 3 is near unity, how-
ever, the narrowing was very slow which makes it diffi-
cult to define an unambigous threshold current.

The intensity modulation response was shown to be not
much different from a conventional semiconductor laser.
It is plausible that one may be able to pump microcavity
lasers higher above threshold than conventional semicon-
ductor lasers can be driven, so there is good hope that the

_ VB(NSS _ NO)(pss + l)pu
Tsp(l + ﬁpss + 7sp/7nr + jQTsp)

;14

sp

AB@)
Y-

In Fig. 8, we have plotted the absolute square of the
normalized beta modulation response function (the abso-
lute square of (41) multiplied by 8/p,,). As long as £ is
small the bandwidth is roughly given by + as can be seen
from the denominator in (41).

In theory one could modulate 8 by shifting the wave-
length of the emitted light out of the cavity resonance
using, e.g., the quantum confined optical Stark-shift ef-
fect [18], [19]. In a three-dimensional cavity this would
generally lead to modification of the spontaneous emis-
sion lifetime, but in a planar (one-dimensional) structure,
the spontaneous lifetime varies much slower than 8 when
the emission wavelength is tuned out of resonance with
the cavity. Possibly, one could design a structure where
only $ varies and 7, remains constant. However, the
reader should bear in mind that the requirement of con-
stant spontaneous emission lifetime and the difficulties in-
volved with electrical time constants associated with the
Stark shifting will probably set the upper limit to the mod-
ulation speed substantially lower than v for yet some time
to come. The reader should also be warned that the anai-
ysis presented here does not take nonlinear gain phenom-
ena into account. These may also limit the modulation
bandwidth.

VII. CONCLUSION

The static and some of the dynamic characteristics of
semiconductor microcavity lasers were investigated using
rate equations. It was shown that in general, the different
threshold conditions lead to roughly the same prediction
for the threshold current. The only exception was when 3
is close to unity, nonradiative recombination is negligi-
ble, and the active volume is greater than 7.,y /N,8. It

(N = No) + j& +

41
VBZ(NSS - NO)(pu + 1) ( )

Tl + Bps; + 7/ Tor + JQT)

modulation bandwidth of microcavity lasers can be made
wider. Two possibilities to increase the modulation band-
width when operating below threshold were outlined. One
was to decrease the spontancous emission lifetime by cav-
ity QED effects, the other was to modulate 38 instead of
the injection current.
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